skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Costa, Andréa_Fernanda_de Santana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The biosynthesis of bacterial cellulose (BC) is significantly influenced by the type of carbon source available in the growth medium, which in turn dictates the material’s final properties. This study systematically investigates the effects of five carbon sources—raffinose (C18H32O16), sucrose (C12H22O11), glucose (C6H12O6), arabinose (C5H10O5), and glycerol (C3H8O3)—on BC production by Komagataeibacter hansenii. The varying molecular weights and structural characteristics of these carbon sources provide a framework for examining their influence on BC yield, fiber morphology, and network properties. BC production was monitored through daily measurements of optical density and pH levels in the fermentation media from day 1 to day 14, providing valuable insights into bacterial growth kinetics and cellulose synthesis rates. Scanning electron microscopy (SEM) was used to elucidate fibril diameter and pore size distribution. Wide-angle X-ray scattering (WAXS) provided a detailed assessment of crystallinity. Selected BC pellicles were further processed via freeze-drying to produce a foam-like material that maximally preserves the natural three-dimensional structure of BC, facilitating the incorporation and release of lidocaine hydrochloride (5%), a widely used local anesthetic. The lidocaine-loaded BC foams exhibited a sustained and controlled release profile over 14 days in simulated body fluid, highlighting the importance of the role of carbon source selection in shaping the BC network architecture and its impact on drug release profile. These results highlight the versatility and sustainability of BC as a platform for wound healing and drug delivery applications. The tunable properties of BC networks provide opportunities for optimizing therapeutic delivery and improving wound care outcomes, positioning BC as an effective material for enhanced wound management strategies. 
    more » « less